Currículo
Inteligência Artificial na Saúde 04514
Contextos
Groupo: Tecnologias Digitais e Saúde - 2023 > 1º Ciclo > Unidades Curriculares Obrigatórias
ECTS
6.0 (para cálculo da média)
Objectivos
Para obter sucesso nesta UC o aluno deverá ser capaz de: O1. Desenvolver e aplicar técnicas de preparação e análise exploratória de dados O2. Desenvolver e aplicar técnicas de visão por computador, transferência de conhecimento e aumento de dados O3. Entender a aplicação de técnicas de classificação de imagem como Redes Neuronais e Redes Neuronais Convolucionais. O4. Entender a aplicação de técnicas de classificação como Árvores de Decisão, Redes Neuronais e Classificação Bayesiana O5. Aplicar técnicas de indução de regras a problemas de extração de conhecimento O6. Desenvolver e aplicar técnicas de séries temporais para análise e previsão de dados. O7. Determinar avaliações para uma boa modelação.
Programa
CP1. Introdução à mineração de dados, problemas de decisão e aplicações CP2. O Processo do ciclo de dados. CP3. Revisão de Estatística descritiva e exploratória. CP4. Operações com imagens CP5. Extração de características de imagem CP6. Redes neuronais clássicas CP7. Redes neuronais convolucionais CP8. Transferência de conhecimento CP9. Árvores de decisão. CP10. Técnicas de inferência Bayesianas. CP11. Séries temporais
Método de Avaliação
A avaliação será feita ao longo do semestre, sendo feita através de dois trabalhos de grupo valendo cada um 30% da nota final e um teste escrito de 40%. Cada uma das componentes de avaliação tem nota mínima de 8 valores e a aprovação na UC requer uma nota final mínima de 10 valores. As notas dos trabalhos poderão variar pelo desempenho demonstrado individualmente numa discussão oral, a ocorrer (para o grupo) no caso da nota (de um dos elementos) entre o teste e o trabalho tiver uma diferença superior a 3 valores. Dado o caráter prático da UC não há lugar a avaliação por exame. É exigida uma assiduidade mínima não inferior a 2/3 das aulas. Melhoria de nota só pode ser feita repetindo o processo de avaliação no ano seguinte.
Carga Horária
Carga Horária de Contacto -
Trabalho Autónomo - 113.0
Carga Total -
Bibliografia
Principal
- J. Howse, J. Minichino, Learning OpenCV 4 with Python 3, 3rd Edition, Packt Publishing, 2020. M. Elgendy, Deep Learning for Vision Systems, Manning, 2020,. Field Cady - The Data Science Handbook - 1st Edition 2017, Wiley. Andrw R. Webb, Keith D. Copsey. Statistical Pattern Recognition, 3rd Ed., Wiley, 2011. Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani. An Introduction to Statistical Learning with Applications in R. Springer, 2013. Cathy O'Neil, Rachel Schutt. Doing Data Science: Straight Talk from the Frontline. O'Reilly Media, 2013:
Secundária
- Foster Provost and Tom Fawcett, - Data Science for Business: What you need to know about data mining and data-analytic thinking?, 2013, O'Reilly Media M. Nixon, A. Aguado, Feature Extraction and Image Processing for Computer Vision, 4th Edition, Academic Press, 2019. I. Goodsfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016. OpenCV, https://opencv.org/ Tensorflow, https://www.tensorflow.org/ R. Szeliski, Computer Vision: Algorithms and Applications, 2nd Edition, Springer, 2021, https://szeliski.org/Book/ F. Chollet, Deep Learning with Python, 2nd Edition, Manning, 2021.: