Currículo
Aprendizagem Automática M4705
Contextos
Groupo: Engenharia de Telecomunicações e Informática > 2º Ciclo > Parte Escolar > Optativas > 1.º Ano
Groupo: Engenharia de Telecomunicações e Informática > 2º Ciclo > Parte Escolar > Optativas > 2.º Ano
ECTS
6.0 (para cálculo da média)
Objectivos
No final da UC o aluno deverá ser capaz de: OA1. Identificar os principais marcos históricos da disciplina; OA2. Conhecer as relações com outras disciplinas; OA3. Enumerar e reconhecer algumas das aplicações; OA4. Caracterizar as principais famílias de algoritmos usados em Aprendizagem Automática; OA5. Compreender e explicar os fundamentos e o funcionamento de um algoritmo que exemplifique: aprendizagem supervisionada (simbólica e sub-simbólica), não supervisionada, por reforço e algoritmos de procura. OA6. Saber explicar em detalhe o funcionamento de um dos algoritmos estudados. OA7. Implementar um algoritmo de aprendizagem automática e/ou usá-lo num problema não trivial.
Programa
CP1. Nota histórica sobre a Aprendizagem Automática. Relação com outras disciplinas. Principais aplicações. CP2. Problemas e tipos de aprendizagem; CP3. Aprendizagem Não Supervisionada; CP4. Aprendizagem Supervisionada (simbólica e sub-simbólica); CP5. Aprendizagem por Reforço; CP6. Métodos de procura e Algoritmos Genéticos; CP7. Preparação de dados, validação de resultados; CP8. Técnicas de aceleração de algoritmos de AA. CP9. Implementação de algoritmo de AA
Método de Avaliação
Inicialmente as aulas serão teóricas / expositivas (2 x 1h30). As aulas passam progressivamente para um acompanhamento e discussão dos trabalhos em curso e apresentação de temas relacionados com os trabalhos. | A avaliação é periódica. A avaliação é composta por um trabalho final (90%) com relatório (máximo de 10 páginas) e apresentações orais. O teste online contribui com os restantes 10% da nota final. Os temas dos trabalhos serão acordados com o docente até meio do semestre. As avaliações serão publicadas no Fénix ou e-learning. A assiduidade não é usada como critério de avaliação ou reprovação. Melhoria de nota ou EEF, trabalho final conta 100%
Carga Horária
Carga Horária de Contacto -
Trabalho Autónomo - 113.0
Carga Total -
Bibliografia
Principal
- (Alpaydin 2010) Ethem Alpaydin. Introduction to Machine Learning. MIT Press (2010).ISBN 026201243X.:
Secundária
- (Duda, Hart 73) R. Duda and P. Hart. Pattern Classification and Scene Analysis. Wiley & Sons, Inc, 1973 (Haykin 99) Simon Haykin. Neural Networks. Prentice Hall, 1999. (Mitchell 97) Tom Mitchell. Machine Learning, McGraw Hill, 1997. :