Ficha Unidade Curricular (FUC)
Informação Geral / General Information
Carga Horária / Course Load
Área científica / Scientific area
460 - Matemática e estatística
Departamento / Department
Departamento de Tecnologias Digitais
Ano letivo / Execution Year
2023/2024
Pré-requisitos / Pre-Requisites
É conveniente que o aluno esteja familiarizado com o currículo de funções e de cálculo algébrico ministrado no ensino secundário.
Objetivos Gerais / Objectives
Pretende-se fornecer os conhecimentos de cálculo diferencial e integral numa só variável. As capacidades a desenvolver incluem raciocínio lógico e clareza de linguagem científica. Por serem indispensáveis à modelação de processos reais, pretende-se ampliar os conhecimentos através de abordagens intuitivas de tipos numérico e gráfico. É usada a metodologia problem-based learning (PBL) como forma de desenvolver capacidades intelectuais que são fundamentais a uma sólida formação profissional em tomada de decisão e trabalho colaborativo. As atividades de introdução e aplicação dos conhecimentos são contextualizadas no respectivo curso de forma a potenciar a aquisição de competências práticas. Pretende-se que o aluno tire vantagem do papel dos computadores na matemática, ciência em geral e engenharia, como complemento às abordagens analíticas e experimentais.
Objetivos de Aprendizagem e a sua compatibilidade com o método de ensino (conhecimentos, aptidões e competências a desenvolver pelos estudantes) / Learning outcomes
OA1 Entender a completude de R e suas consequências OA2 Apreender os conceitos de sucessão e de série (com vista às fórmulas de Taylor e somas de Riemann) OA3 Obter a função soma e domínio de convergência em séries de potências OA4 Aprofundar o conceito de função e a sua importância em modelação OA5 Aprofundar o conceito de limite e a caraterização de funções contínuas através de sucessões OA6 Analisar o comportamento assintótico de funções e a evolução de sucessões quanto a monotonia, limitação e convergência OA7 Obter aproximações de Taylor (várias ordens) e aplicá-las em problemas com contexto real OA8 Compreender a noção de partição e de integral como limite de somas de Riemann, e aplicar o teorema fundamental OA9 Aplicar os conceitos de derivada, sucessão, série e integral na resolução de problemas com contexto OA10 Articular diferentes abordagens dos conteúdos: gráfica, numérica e algébrica
Conteúdos Programáticos / Syllabus
CP1 Reta real e álgebra em R. Completude. Valor absoluto CP2 Sucessões de números reais. Definição recursiva. Monotonia. Supremo e ínfimo. Convergência e enquadramento CP3 Noção de série numérica, somas parciais e soma. Séries aritmética, geométrica e harmónica CP4 Séries de potências. Convergência CP5 Funções de R em R. Funções elementares. Paridade e transformações ao gráfico. Período e frequências CP6 Composta e inversa. Comportamento assintótico CP7 Função logaritmo. Trigonométricas inversas. Identidades e álgebra trigonométrica CP8 Limites. Continuidade. Teoremas de Weierstrass e do valor intermédio CP9 Derivada num ponto e seu significado. Teorema do valor médio. Regra da cadeia e derivada da inversa. Derivação implícita CP10 Aproximações de Taylor. Extremos locais e/ou globais CP11 Partições. Integral definido à Riemann. Primitivas. Teorema fundamental do cálculo. Mudanças de variável. Integrais impróprios. Critérios de integrabilidade
Demonstração da coerência dos conteúdos programáticos com os objetivos de aprendizagem da UC / Evidence that the curricular units content dovetails with the specified learning outcomes
Os conteúdos programáticos (CPs) estão relacionados com cada um dos objetivos de aprendizagem (OAs) da seguinte forma: OA1 - CP1, CP2, CP3, CP4, CP5, CP6, CP7, CP8, CP9, CP10, CP11 OA2 - CP2 OA3 - CP4 OA4 - CP5, CP6, CP7, CP8, CP9, CP10, CP4, CP11 OA5 - CP6, CP7, CP8, CP9, CP4, CP11 OA6 - CP6, CP8, CP9, CP10, CP2, CP3, CP4, C11 OA7 - CP11 OA8 - CP10 OA9 - CP9, CP2, CP3, CP4, C11 OA10 - de CP1 a CP11
Avaliação / Assessment
Aprovação com classificação não inferior a 10 valores numa das modalidades seguintes: - Avaliação Periódica: 2 minitestes (MT) realizados em aula com duração aproximada de 30 min (15% cada) + Teste final realizado na data do primeiro exame (40%) + trabalhos semanais realizados no Moodle (20%) + trabalho/projeto realizado em grupos de 2-3 alunos (10%), A média dos minitestes ( (MT1+MT2)/2 ) tem nota mínima de 7.0 valores. O teste final tem nota mínima de 7.0 valores. Há a possibilidade de realização de orais. ou - Avaliação por Exame (100%).
Metodologias de Ensino / Teaching methodologies
Serão aplicadas as metodologias de ensino-aprendizagem (MEAs) seguintes: MEA1. Expositivas, com apresentação e discussão dos quadros teóricos de referência MEA2. Participativas, com interpretação e resolução de exercício prático e problema de aplicação MEA3. Activas, com realização de trabalho de grupo MEA4. Experimentais, com exploração computacional de conteúdos programáticos, em laboratório MEA5. Auto-estudo, com atividades de trabalho autónomo a realizar pelo aluno, conforme o Plano de Aulas.
Demonstração da coerência das metodologias de ensino e avaliação com os objetivos de aprendizagem da UC / Evidence that the teaching and assessment methodologies are appropriate for the learning outcomes
As metodologias de ensino-aprendizagem (MEAs) visam atingir os objetivos de aprendizagem (OAs) conforme indicado de seguida: MEA1 - de OA1 a OA10 MEA2 - de OA1 a OA10 MEA3 - de OA1 a OA10 MEA4 - de OA1 a OA10 MEA5 - de OA1 a OA10
Observações / Observations
As aulas são maioritariamente teórico-práticas (TP), existindo cerca de 2 aulas laboratoriais (PL) com programação em Python de exploração de conteúdos programáticos. É aconselhado o número mínimo de 5 horas semanais em trablho autónomo (MEA5) para consulta da bibliografia indicada, resolução de exercícios e problemas, exploração computacional em Python e revisão de conteúdos.
Bibliografia Principal / Main Bibliography
Campos Ferreira J. (2018). Introdução à Análise Matemática. Fundação Calouste Gulbenkian. Stewart J. (2013). Cálculo. Vol I, 7ª Edição [tradução EZ2 Translate, São Paulo]. Cengage Learning [recurso eletrónico: https://aedmoodle.ufpa.br/pluginfile.php/311602/mod_resource/content/1/Calculo%20-%20James%20Stewart%20-%207%20Edição%20-%20Volume%201.pdf] Strang, G. (2007). Computational Science and Engineering, Wellesley-Cambridge Press Materiais científico-pedagógicos (Jupyter noteboos, slides, notas de desenvolvimento, código e pseudo código, fichas de exercícios e problemas) disponibilizados pela equipa docente Scientific-pedagogical materials (Jupiter notebooks, slides, lectures, code and pseudo code, exercise sheets, problems) provided by the teaching team.
Bibliografia Secundária / Secondary Bibliography
Lima E.L. (2001). Análise real. Vol 1. Coleção Matemática Universitária,SBM. Rio de Janeiro. Ávila G. (2006). Análise Matemática para a Licenciatura. Ed.Edgard Blucher. São Paulo.
Data da última atualização / Last Update Date
2024-02-16